The functional O-mannose glycan on α-dystroglycan contains a phospho-ribitol primed for matriglycan addition
نویسندگان
چکیده
Multiple glycosyltransferases are essential for the proper modification of alpha-dystroglycan, as mutations in the encoding genes cause congenital/limb-girdle muscular dystrophies. Here we elucidate further the structure of an O-mannose-initiated glycan on alpha-dystroglycan that is required to generate its extracellular matrix-binding polysaccharide. This functional glycan contains a novel ribitol structure that links a phosphotrisaccharide to xylose. ISPD is a CDP-ribitol (ribose) pyrophosphorylase that generates the reduced sugar nucleotide for the insertion of ribitol in a phosphodiester linkage to the glycoprotein. TMEM5 is a UDP-xylosyl transferase that elaborates the structure. We demonstrate in a zebrafish model as well as in a human patient that defects in TMEM5 result in muscular dystrophy in combination with abnormal brain development. Thus, we propose a novel structure-a ribitol in a phosphodiester linkage-for the moiety on which TMEM5, B4GAT1, and LARGE act to generate the functional receptor for ECM proteins having LG domains.
منابع مشابه
Matriglycan: a novel polysaccharide that links dystroglycan to the basement membrane
Associations between cells and the basement membrane are critical for a variety of biological events including cell proliferation, cell migration, cell differentiation and the maintenance of tissue integrity. Dystroglycan is a highly glycosylated basement membrane receptor, and is involved in physiological processes that maintain integrity of the skeletal muscle, as well as development and func...
متن کاملISPD produces CDP-ribitol used by FKTN and FKRP to transfer ribitol phosphate onto α-dystroglycan
Mutations in genes required for the glycosylation of α-dystroglycan lead to muscle and brain diseases known as dystroglycanopathies. However, the precise structure and biogenesis of the assembled glycan are not completely understood. Here we report that three enzymes mutated in dystroglycanopathies can collaborate to attach ribitol phosphate onto α-dystroglycan. Specifically, we demonstrate tha...
متن کاملAGO61-dependent GlcNAc modification primes the formation of functional glycans on α-dystroglycan
Dystroglycanopathy is a major class of congenital muscular dystrophy that is caused by a deficiency of functional glycans on α-dystroglycan (α-DG) with laminin-binding activity. A product of a recently identified causative gene for dystroglycanopathy, AGO61, acted in vitro as a protein O-mannose β-1, 4-N-acetylglucosaminyltransferase, although it was not functionally characterized. Here we show...
متن کاملDevelopment of Rabbit Monoclonal Antibodies for Detection of Alpha-Dystroglycan in Normal and Dystrophic Tissue
Alpha-dystroglycan requires a rare O-mannose glycan modification to form its binding epitope for extracellular matrix proteins such as laminin. This functional glycan is disrupted in a cohort of muscular dystrophies, the secondary dystroglycanopathies, and is abnormal in some metastatic cancers. The most commonly used reagent for detection of alpha-dystroglycan is mouse monoclonal antibody IIH6...
متن کاملB4GAT1 is the priming enzyme for the LARGE-dependent functional glycosylation of α-dystroglycan
Recent studies demonstrated that mutations in B3GNT1, an enzyme proposed to be involved in poly-N-acetyllactosamine synthesis, were causal for congenital muscular dystrophy with hypoglycosylation of α-dystroglycan (secondary dystroglycanopathies). Since defects in the O-mannosylation protein glycosylation pathway are primarily responsible for dystroglycanopathies and with no established O-manno...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2016